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a b s t r a c t

We discuss three new implementation versions of diffuse reflection boundary conditions in
a thermal lattice Boltzmann model. Their accuracy is investigated in the case of Couette
flow by considering the slip regime. The best results are recovered with versions 2 and
3, which rely on outgoing fluxes to express the particle distribution functions in the ghost
nodes outside the flow domain. Version 2 is found to be more economical since it involves
no interpolation procedure. This version was thereafter used to investigate the tempera-
ture profile in Couette flow for various values of Prandtl number, as well as the capability
of the thermal LB model to capture the Knudsen minimum in Poiseuille flow.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

It is well known that the continuum hypothesis is no longer valid when the Knudsen number Kn ¼ k=L, defined as the
ratio between the mean free path k of fluid particles and the characteristic size L of the flow domain, becomes noticeable
(Kn > 0.01). For such cases, encountered in both micro-scale and rarefied gas flow, the use of Navier–Stokes–Fourier equa-
tions, as well as of the traditional techniques of computational fluid dynamics (CFD), becomes questionable [1–6]. Lattice
Boltzmann (LB) models provide a promising alternative to CFD, as well as to molecular dynamics (MD) or direct simulation
Monte Carlo (DSMC) models. LB models are derived from the Boltzmann equation using a simplified version of the collision
term, as well as an appropriate discretisation of the phase space [7–13]. The interest for the use of LB models to investigate
micro-scale flows is growing constantly [14–35], especially because traditional models currently used to investigate fluid
physics at non-negligible values of Kn (MD and DSMC) need huge computing resources that can easily exceed the capacity
of today’s supercomputers [1,2,4–6].

Implementation of boundary conditions (BC) is crucial to enable proper use of LB models for the investigation of micro-
scale flow. Velocity slip and rarefaction phenomena were first evidentiated by LB simulations in the pioneering works of Nie
et al. [14], as well as of Lim et al. [15]. Various implementations of BC were later considered in the literature [16–35] in order
to fit the specific numerical schemes used to solve the partial derivative equations that control the evolution of the
. All rights reserved.
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distribution functions in the LB models. Many of these implementations are based on the diffuse reflection concept, which
dates back to the time of Maxwell and Smoluchowski [36,37].

The implementation of diffuse reflection boundary conditions in the two-dimensional finite difference lattice Boltzmann
model with multiple speeds and variable temperature, developed by Watari and Tsutahara [38], as done in Ref. [26], requires
the use of the first order upwind finite difference scheme in the lattice nodes adjacent to the walls of the flow domain, even if
higher order numerical schemes may be considered in the bulk nodes [29]. Although this implementation of BC was success-
fully used [26,29,30] to capture the main characteristics of micro-channel flow (velocity slip and temperature jump near the
walls, as well as the thermal creep phenomenon), the accuracy of the simulation results near the flow domain walls still
needs to be improved [29].

The purpose of this paper is to introduce new versions of the diffuse reflection boundary conditions for the two-dimen-
sional LB model of Watari and Tsutahara [38], as well as to investigate their accuracy. Although we restrict ourselves to a
particular model where second order flux limiter schemes [29,30,39–42] are considered to enhance numerical accuracy in
the bulk nodes while preserving the stability in the presence of density gradients [30,43], the implementation of our bound-
ary conditions may be easily conducted in other finite difference LB models as well. The paper is organized as follows. For
convenience, the multispeed model with variable temperature of Watari and Tsutahara, as well as the flux limiter numerical
scheme are briefly described in Section 2. The existing implementation of diffuse reflection boundary conditions for this
model, as well as three new versions are introduced in Section 3. In Section 4, their accuracy is investigated in the case of
Couette and Poiseuille flow.

2. Description of the lattice Boltzmann model with variable temperature and flux limiters

The thermal LB model of Watari and Tsutahara (WT) involves a set of 33 nondimensionalized velocities [38]
e00 ¼ 0; eki ¼ cos
pði� 1Þ

4
; sin

pði� 1Þ
4

� �
ck ðk ¼ 1; . . . 4; i ¼ 1; . . . 8Þ ð1Þ
The values of the speeds ck 2 f1:0; 1:92; 2:99; 4:49g were determined in [38] to ensure the stability of this model within the
largest possible temperature range ð0:4 6 h 6 1:6Þ. The corresponding distribution functions f00 ¼ f00ðx; tÞ; fki ¼ fkiðx; tÞ are
defined in the nodes x of a square lattice. The local fluid density n, the velocity u and the temperature h are determined from
these distribution functions, as follows [38]:
n ¼
X

ki

fki ð2Þ

nua ¼
X

ki

fkiekia ð3Þ

n hþ u2

2

� �
¼ 1

2

X
ki

fkic2
k ð4Þ
The distribution functions in the thermal model of Watari and Tsutahara evolve according to the following equation (in non-
dimensionalized form)
@tfki þ eki � rfki ¼ �
1
s
½fki � f eq

ki � ð5Þ
where the equilibrium distribution functions
f eq
ki ¼ f eq

ki ðx; tÞ ¼ nFkski ð6Þ
are expressed using the series expansion ski ¼ skiðh;uÞ up to fourth order [38] with respect to the Cartesian components
uaða ¼ 1;2Þ of the fluid velocity (summation over repeated Greek indices is understood):
ski ¼ 1� u2

2h
þ u4

8h2

� �
þ 1

h
1� u2

2h

� �
ekinun þ

1
2h2 1� u2

2h

� �
ekinekigunug þ

1
6h3 ekinekigekifunuguf þ

1
24h4 ekinekigekifekivunugufuv

ð7Þ
The weight factors Fk ¼ FkðhÞ in Eq. (6) depend on the local temperature h ¼ hðx; tÞ and the speeds ck; k ¼ 1; . . . 4:
Fk ¼
1

c2
k c2

k � c2
fkþ1g

� �
c2

k � c2
fkþ2g

� �
c2

k � c2
fkþ3g

� �� 48h4 � 6 c2
fkþ1g þ c2

fkþ2g þ c2
fkþ3g

� �
h3

h

þ c2
fkþ1gc

2
fkþ2g þ c2

fkþ2gc
2
fkþ3g þ c2

fkþ3gc
2
fkþ1g

� �
h2 � c2

fkþ1gc
2
fkþ2gc

2
fkþ3gh=4

i
ð8Þ

F0 ¼ 1� 8ðF1 þ F2 þ F3 þ F4Þ ð9Þ
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Here we used the notation ðl ¼ 1;2;3Þ
fkþ lg ¼
kþ l; kþ l 6 4
kþ l� 4; kþ l > 4

�
ð10Þ
Although the WT model needs more computing resources because of the relatively large number of distribution functions
when compared to other lattice Boltzmann models with variable temperature, like the internal energy density distribution
function (IEDDF) model [44–47], one should stress the fact that all observable fields (density, velocity and temperature) are
derived by WT from the same distribution function, as in standard kinetic theory. The WT strategy may be useful to derive
also higher order LB models by further expanding the Maxwell-Boltzmann distribution function to higher orders, as sug-
gested in [48].

In order to control the Knudsen number during computer simulations, the non-dimensionalized relaxation time s in Eq.
(5) is expressed as [26]
s ¼ K
n�c

ð11Þ
where K is a constant, n is the local particle density introduced in Eq. (2) and
�c ¼
P4

k¼1ck
P8

i¼1fki

f0 þ
P4

k¼1

P8
i¼1fki

ð12Þ
is the local average speed of fluid particles. In the sequel, we adopt the value K ¼ 106, which corresponds to a flow domain
whose characteristic size is L ¼ 10�6 m [26]. As discussed in [26], the value of Knudsen number is given by
Kn ¼ K
n

ð13Þ
Since the nondimensionalized speeds ck of the thermal LB model are no longer related to the lattice spacing ds and the time
step dt, as in the standard (collision – streaming) LB models [11,12], finite difference schemes need to be used to evolve the
distribution functions in each lattice node [38]. The use of finite difference schemes in LB model, first proposed in [49], al-
lows for more freedom in the discretization of the phase space. Higher order schemes based on flux limiters proved to be
efficient and stable during computer simulations done using this model [29,30,43]. These schemes are briefly outlined below.

Let f n;j
ki ¼ fkiðxj; tÞ be the value of the distribution function fki at time t in the node xj on the characteristic line along the

direction i (for convenience, the characteristic line for direction i ¼ 2 is shown in Fig. 1). The updated value f nþ1;j
ki ¼ fkiðxj; t þdtÞ

of the distribution function f n;j
ki at time t þ dt in the node xj is computed using two fluxes
f nþ1;j
ki ¼ f n;j

ki �
ckdt
Aids

F n;jþ1=2
ki � F n;j�1=2

ki

h i
� dt

s
f n;j
ki � f eq;n;j

ki

h i
ð14Þ
where
Ai ¼
1; i 2 f1;3;5;7gffiffiffi

2
p

; i 2 f2;4;6;8g

�
ð15Þ
The outgoing and incoming fluxes in node j along the direction i are
F n;jþ1=2
ki ¼ f n;j

ki þ
1
2

1� ckdt
Aids

� �
f n;jþ1
ki � f n;j

ki

h i
WðHn;j

ki Þ ð16Þ

F n;j�1=2
ki ¼ F n;ðj�1Þþ1=2

ki ð17Þ
j +1

j

ek2

j - 1

Fig. 1. Characteristic line on the square lattice ði ¼ 2Þ.
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where WðHn;j
ki Þ is the flux limiter and
Fig. 2.
fkiðk ¼ 1
Hn;j
ki ¼

f n;j
ki � f n;j�1

ki

f n;jþ1
ki � f n;j

ki

ð18Þ
is the smoothness function [39,40]. From the wide choice of flux limiters in the literature [39–41], which all work well with
LB models, we adopt the Monitorized Central Difference (MCD) flux limiter given by
W Hn;j
ki

� �
¼

0; Hn;j
ki 6 0

2Hn;j
ki ; 0 6 Hn;j

ki 6
1
3

1þHn;j
ki

� �.
2; 1

3 6 Hn;j
ki 6 3

2; 3 6 Hn;j
ki

8>>>>><
>>>>>:

ð19Þ
3. Diffuse reflection boundary conditions

Application of the updating rule (14) in the bulk nodes of the lattice is straightforward. The same holds for lattice nodes
where periodic boundary conditions apply. Special attention should be paid when applying the updating rule (14) in the
boundary nodes located near the walls of the flow domain. Let us consider a rectangular flow domain bounded by two ver-
tical walls. According to the diffuse reflection concept [1,2,17,22,26,36,37], the distribution functions of the particles directing
to the wall mix themselves (i.e., thermalize) in wall nodes as a result of particle-wall interaction and become Maxwellian
before getting reflected into the fluid (see Fig. 2, which refers to the left wall of constant temperature hwl and velocity
uwl). More precisely, the distribution functions whose corresponding velocities point normal to the wall mix separately from
the distribution functions corresponding to velocities orientated along the diagonals of the square lattice.

A procedure, which relies on interpolation to define the values of the distribution functions in the ghost nodes outside the
wall, was already introduced in the LB model of Watari and Tsutahara [26,29,30]. For convenience, this implementation of
the diffuse reflection boundary conditions that we call version 0 from now on, is described below. A drawback of this version
is the use of the first order upwind finite difference scheme to update the distribution functions in the boundary nodes near
the walls, even if flux limiter schemes may be easily used in the bulk nodes [29]. For this reason, three new and more elab-
orated versions of the diffuse reflection boundary conditions will be further introduced in this Section to allow the use of flux
limiter schemes in the boundary nodes, too.

3.1. Version 0

We refer to the left channel wall in Fig. 2, since the right wall is handled in a similar manner. The wall is located half
lattice spacing between the ghost nodes and the fluid nodes. Let the indices ðj; lÞ fix the position of a node into the lattice.
8 6

4

l+1

l+2

l−1

l

l+1/2

0 1 2 31/2 3/2 5/2

1 5
2

Diffuse reflection boundary conditions: � - ghost nodes, � – boundary nodes, � – bulk nodes, j - wall nodes where the distribution functions
; . . . 4; i ¼ 1; 2; 8Þ follow the Maxwell distribution law.
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The black squares ðj ¼ 1=2; lÞ and ðj ¼ 1=2; lþ 1=2Þ; l ¼ 0;1; . . ., denote the mixing nodes on the wall. The corresponding

(unknown) values of the particle number density are n1=2;l
wl and n1=2;lþ1=2

wl , respectively. Because of particle-wall interactions,
the distribution function of fluid particles reflected by the walls becomes Maxwellian. The values of the distribution func-
tions f 0;l

k1 ; f
0;l
k2 and f 0;lþ1

k8 ; ðl ¼ 0;1; . . .Þ, defined in the ghost nodes ðj ¼ 0; l) outside the wall need to be computed in order to
use the updating rule (14) for the distribution functions in the lattice nodes ðj ¼ 1; lÞ located near the wall. For these
nodes, the MCD scheme is reduced to the first order upwind scheme by setting the corresponding value of the flux limiter
to zero.

Following the discretization of the velocity space, in the LB model the Maxwellian distribution function is replaced by the
set of equilibrium distribution functions, Eq. (6), and the distribution functions of reflected particles may be calculated in
wall nodes using an interpolation procedure. This gives ðk ¼ 1; . . . 4Þ:
f 0;l
k1 þ f 1;l

k1

FkðhwlÞsk1ðhwl;uwlÞ
¼ 2n1=2;l

wl ð20Þ

f 0;l
k2 þ f 1;lþ1

k2

FkðhwlÞsk2ðhwl;uwlÞ
¼ f 0;lþ1

k8 þ f 1;l
k8

FkðhwlÞsk8ðhwl;uwlÞ
¼ 2n1=2;lþ1=2

wl ð21Þ
Eqs. (20), (21), together with the requirements that there is no mass flux perpendicular to the wall in the mixing nodes:
X
k

ckf 1;l
k5 ¼

X
k

ckf 0;l
k1 ð22Þ

X
k

ck f 1;l
k4 þ f 1;lþ1

k6

h i
¼
X

k

ck f 0;l
k2 þ f 0;lþ1

k8

h i
ð23Þ
may be solved to get the values of the distribution functions in the ghost nodes (0, l) and (0, l+1) after each time step.

3.2. Version 1

In this version, the interpolation procedure is rejected. We simply assume that the distribution functions in the ghost
nodes are identical to the corresponding distribution functions in the wall nodes. Since the reflected distribution functions
in the wall nodes are Maxwellian, this assumption means
f 0;l
k1 ¼ n1=2;l

wl FkðhwlÞsk1ðhwl;uwlÞ
f 0;l
k2 ¼ n1=2;lþ1=2

wl FkðhwlÞsk2ðhwl;uwlÞ ð24Þ
f 0;lþ1
k8 ¼ n1=2;lþ1=2

wl FkðhwlÞsk8ðhwl;uwlÞ
After replacing the expressions (24) of the ghost distribution functions in the conservation Eqs. (22,23), we get the values of
the fluid density in the wall nodes:
n1=2;l
wl ¼

P
kckf 1;l

k5P
kckFkðhwlÞsk1ðhwl;uwlÞ

ð25Þ

n1=2;lþ1=2
wl ¼

P
kck f 1;l

k4 þ f 1;lþ1
k6

h i
P

kckFkðhwlÞ sk2ðhwl;uwlÞ þ sk8ðhwl;uwlÞ½ � ð26Þ
Eq. (24) are then used to get the values of the distribution functions in the ghost nodes.

3.3. Version 2

The distribution functions in the ghost nodes are still considered identical to the reflected functions defined in the wall
nodes and thus, Eq. (24) hold also in this version. However, the distribution functions defined in the boundary nodes (f 1;l

k5 ; f
1;l
k4

and f 1;lþ1
k6 ) that appear in the conservation Eqs. (22), (23) are replaced by the corresponding outgoing fluxes (F 1=2;l

k5 ;F 1=2;lþ1=2
k4

and F 1=2;lþ1=2
k6 ) defined in the wall nodes:
X

k

ckF 1=2;l
k5 ¼

X
k

ckf 0;l
k1 ð27Þ

X
k

ck F 1=2;lþ1=2
k4 þ F 1=2;lþ1=2

k6

h i
¼
X

k

ck f 0;l
k2 þ f 0;lþ1

k8

h i
ð28Þ
The outgoing fluxes in the equations above are computed according to Eq. (16), where the value of the smoothness function
is assumed to equal the unit value. In this case, most of the flux limiters in the literature, including MCD [39–41] also equal
the unit value. Consequently, we get
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F 1=2;l
k5 ¼ f 1;l

k5 þ
1
2

1� ckdt
A5ds

� �
f 1;l
k5 � f 2;l

k5

h i

F 1=2;lþ1=2
k4 ¼ f 1;l

k4 þ
1
2

1� ckdt
A4ds

� �
f 1;l
k4 � f 2;l�1

k4

h i
ð29Þ

F 1=2;lþ1=2
k6 ¼ f 1;lþ1

k6 þ 1
2

1� ckdt
A6ds

� �
f 1;lþ1
k6 � f 2;lþ2

k6

h i
The values of the fluid particle density in the wall nodes are recovered from Eq. (24) and the conservation Eqs. (27), (28):
n1=2;l
wl ¼

P
kckF 1=2;l

k5P
kckFkðhwlÞsk1ðhwl;uwlÞ

ð30Þ

n1=2;lþ1=2
wl ¼

P
kck F 1=2;lþ1=2

k4 þ F 1=2;lþ1=2
k6

h i
P

kckFkðhwlÞ sk2ðhwl;uwlÞ þ sk8ðhwl;uwlÞ½ � ð31Þ
As in the previous version, Eq. (24) are finally used to get the values of the distribution functions in the ghost nodes.

3.4. Version 3

The interpolation procedure defined by Eqs. (20), (21) is kept in this version, while the distribution functions defined in
the ghost nodes (f 0;l

k1 ; f
0;l
k2 and f 0;lþ1

k8 ), which appear in the conservation Eqs. (27), (28) used in the previous version are replaced

by the incoming fluxes F 1=2;l
k1 ;F 1=2;lþ1=2

k2 and F 1=2;lþ1=2
k8 :
X

k

ckF 1=2;l
k5 ¼

X
k

ckF 1=2;l
k1

X
k

ck F 1=2;lþ1=2
k4 þ F 1=2;lþ1=2

k6

h i
¼
X

k

ck F 1=2;lþ1=2
k2 þ F 1=2;lþ1=2

k8

h i
ð32Þ
The incoming fluxes are computed after setting the smoothness function to the unit value:
F 1=2;l
k1 ¼ f 0;l

k1 þ
1
2

1� ckdt
A1ds

� �
f 1;l
k1 � f 0;l

k1

h i

F 1=2;lþ1=2
k2 ¼ f 0;l

k2 þ
1
2

1� ckdt
A2ds

� �
f 1;lþ1
k2 � f 0;l

k2

h i
ð33Þ

F 1=2;lþ1=2
k8 ¼ f 0;lþ1

k8 þ 1
2

1� ckdt
A8ds

� �
f 1;l
k8 � f 0;lþ1

k8

h i
After application of the interpolation procedure (20), (21), the incoming fluxes become
F 1=2;l
k1 ¼ 1þ ckdt

A1ds

� �
n1=2;l

wl FkðhwlÞsk1ðhwl;uwlÞ �
ckdt
A1ds

f 1;l
k1

F 1=2;lþ1=2
k2 ¼ 1þ ckdt

A2ds

� �
n1=2;lþ1=2

wl FkðhwlÞsk2ðhwl;uwlÞ �
ckdt
A2ds

f 1;lþ1
k2 ð34Þ

F 1=2;lþ1=2
k8 ¼ 1þ ckdt

A8ds

� �
n1=2;lþ1=2

wl FkðhwlÞsk8ðhwl;uwlÞ �
ckdt
A8ds

f 1;l
k8
The values of the fluid particle density in the wall nodes are retrieved after replacing (29) and (34) in the conservation Eq.
(32):
n1=2
wl ¼

P
kck

ckdt
A1ds f 1;l

k1 þ f 1;l
k5 þ 1

2 1� ckdt
A5ds

� �
f 1;l
k5 � f 2;l

k5

� �h i
P

kck 1þ ckdt
A1ds

� �
FkðhwlÞsk1ðhwl;uwlÞ

n1=2
wl ¼

P
kck

ckdt
A2ds f 1;lþ1

k2 þ f 1;lþ1
k6 þ 1

2 1� ckdt
A6ds

� �
f 1;lþ1
k6 � f 2;lþ2

k6

� �h i
P

kck 1þ ckdt
A2ds

� �
FkðhwlÞsk2ðhwl;uwlÞ þ 1þ ckdt

A8ds

� �
FkðhwlÞsk8ðhwl;uwlÞ

h i

þ
P

kck
ckdt
A8ds f 1;l

k8 þ f 1;l
k4 þ 1

2 1� ckdt
A4ds

� �
f 1;l
k4 � f 2;l�1

k4

� �h i
P

kck 1þ ckdt
A2ds

� �
FkðhwlÞsk2ðhwl;uwlÞ þ 1þ ckdt

A8ds

� �
FkðhwlÞsk8ðhwl;uwlÞ

h i ð35Þ
These values allow us to compute the values of the distribution functions in ths ghost nodes, according to the interpolation
procedure (21).



V. Sofonea / Journal of Computational Physics 228 (2009) 6107–6118 6113
4. Computer results

4.1. Accuracy of the four implementation versions of the diffuse reflection boundary conditions

Simulation of Couette flow was used to test the new implementation versions of the diffuse reflection boundary condi-
tions. A two-dimensional fluid system was placed between two vertical walls located at x ¼ �L=2 and x ¼ L=2, where L ¼ 1 is
the non-dimensionalized channel width. Periodic boundary conditions were applied in the y direction. The left and right
walls move in opposite directions with velocities uwl ¼ �uw and uwr ¼ uw, respectively. The wall speed was set to
uw ¼ 0:1. The corresponding wall temperatures are hwl and hwr .

We restrict ourselves to Couette flow in the slip flow regime (Kn < 0.1), when the spatial extension of the Knudsen layer is
still negligible and the velocity profile across the channel is well approximated by a linear one [1,2,4,5]. In this case, analyt-
ical solutions for the vertical component uðxÞ of the fluid velocity and the temperature hðxÞ in the normal direction to the
channel walls are available [26]:
uðxÞ ¼ Axþ B ð36Þ
hðxÞ ¼ Cx2 þ Dxþ E ð37Þ
where the coefficients
A ¼ uwr � uwl

1þ 2Kn
ð38Þ

B ¼ uwr þ uwl

2
ð39Þ

C ¼ � g
2j

A2 ð40Þ

D ¼ hwr � hwl

1þ 2Kn
ð41Þ

E ¼ g
8j

A2ð1þ 4hKnÞ þ hwr þ hwl

2
ð42Þ
are expressed using the dynamic fluid viscosity g ¼ nhs and the thermal conducibility j ¼ 2nhs [38]. For the thermal model
of Watari and Tsutahara, the constant h in Eq. (42) has the value ðc ¼ 2Þ
h ¼ 2c
cþ 1

1
Pr
¼ 4

3
ð43Þ
where
Pr ¼ 2g
j
¼ 1 ð44Þ
is the Prandtl number.
Temperature jump and slip velocity are specific to micro-scale flow when the Knudsen number is no longer negligible. For

Couette flow with uwr ¼ �uwl ¼ uw and hwr ¼ hwl ¼ hw, the temperature jump and the slip velocity at the walls are given by
[26]
uslip ¼ uw þ uð�L=2Þ ¼ uw � uðL=2Þ ¼ uw
2fKn

ð1þ 2fKnÞ ð45Þ

hjump ¼ hð�L=2Þ � hw ¼ hðL=2Þ � hw ¼ u2
wPr

hKn

ð1þ 2KnÞ2
ð46Þ
where f ¼ 1:15 is a correction factor [26].
Typical profiles of velocity and temperature in Couette flow are shown in Fig. 3 for three values of Kn. These profiles were

recovered on a lattice with N ¼ 100 nodes in the horizontal direction and three nodes in the vertical direction by using ver-
sion 2 of the diffuse reflection boundary conditions, as well as the MCD flux limiter scheme. The slip velocity and the tem-
perature jump increase with Kn, as expected. The MCD flux limiter scheme, which is of second order with respect to the
lattice spacing ds ¼ L=N, is preferred against the much simpler first order upwind scheme because of the lower numerical
dissipation [29,41,42]. This is justified in Fig. 4, where simulation results recovered for Kn = 0.001 with the first order upwind
scheme, as well as with the MCD flux limiter scheme, are compared to theoretical results, Eq. (37), for two values of N. Higher
fluid temperature values are observed in the middle of the channel when using the first order upwind scheme. These
unphysical values are due to numerical dissipation, which plagues the first order upwind scheme, and are still observed
when decreasing the lattice spacing ds by increasing the number of lattice nodes N per unit length. Even if other second order
finite difference schemes like the space centered scheme, the second order upwind scheme, Lax-Wendroff or Lax-Friedrichs,
may be considered to reduce numerical dissipation, it is known that these schemes become unstable in the presence of
density gradients which arise, e.g., in multiphase systems [41]. For this reason, the new versions of the diffuse reflection
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boundary conditions, introduced in this paper, were especially designed to allow the incorporation of flux limiter schemes in
the lattice nodes adjacent to the flow domain walls.

To compare the accuracy of the four implementation versions of the diffuse reflection boundary conditions discussed in
Section 3, we used the same lattice spacing ds ¼ L=NðN ¼ 100Þ for all computer runs and plotted in Fig. 5 the dependence of
the velocity slip uslip at the left channel wall, as well as of the corresponding temperature jump hjump, with respect to the
Knudsen number. Since the fluid velocity and temperature values are defined in the nodes of a discrete lattice, a second order
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Fig. 5. Effect of Knudsen number on the velocity slip and temperature jump near the left channel wall in Couette flow, as recovered with various
implementations of the diffuse reflection boundary conditions ðds ¼ 0:01Þ.
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extrapolation technique was used in order to get the values hð�L=2Þ;uð�L=2Þ of the fluid temperature and velocity on the left
channel wall, which appear in Eqs. (45) and (46).

As seen in Fig. 5, comparison between LB simulation results and the analytical solutions (45) and (46) reveals that ver-
sions 2 and 3 of the diffuse reflection boundary conditions, which give quite identical results, are generally more accurate
than the results recovered when using versions 0 and 1 in the slip flow regime. Moreover, versions 0 and 1 give unphysical
(negative) values of the velocity slip uslip and the temperature jump hjump for very small values of Kn. According to Fig. 6, these
unphysical values are specific to larger values of the lattice spacing ds. As the lattice spacing becomes smaller, the numerical
accuracy of the four versions improves significantly and both quantities (velocity slip and temperature jump) evolve towards
the corresponding values computed in accordance to Eqs. (45) and (46). However, in Fig. 6 one can easily see that version 0 of
the diffuse reflection boundary conditions still exhibits the largest numerical errors, regardless the value of the lattice
spacing ds.

For a quantitative estimation of numerical errors introduced by the four versions of the diffuse reflection boundary con-
ditions, we compared the corresponding transversal velocity and temperature profiles for Kn = 0.001 to the analytical results,
Eqs. (36) and (37). Let xj; j ¼ 1;2; . . . N be the coordinates of the lattice nodes along a transversal section of the channel and
uj; hj be the corresponding values of the local fluid velocity and temperature, recovered using the LB method. Following quan-
tities provide global estimations of the accuracy of velocity and temperature profiles, respectively:
Evel ¼ ds
XN

j¼1

juj � uðxjÞj ð47Þ

Etemp ¼ ds
XN

j¼1

jhj � hðxjÞj ð48Þ
where uðxjÞ; hðxjÞ are the corresponding values of the velocity and temperature in the lattice node j along the transversal sec-
tion, as computed using the analytical solutions, Eqs. (36) and (37). As seen in Fig. 7, the accuracy of the simulation results is
significantly higher when using versions 2 or 3 of the diffuse reflection boundary conditions. The accuracy scales with ðdsÞ2,
as expected because the MCD flux limiter scheme is of second order.

4.2. Control of Prandtl number

A current problem concerning the lattice Boltzmann models with variable temperature is related to the achievement of
various values of the Prandtl number Pr during computer simulations. The value Pr=1 is uniquely defined in single relaxa-
tion time LB models like the thermal model of Watari and Tsutahara since both transport coefficients (viscosity g and heat
conducibility j) are proportional to the relaxation time s. LB models that allow to control the value of Pr were recently pro-
posed in the literature and rely on various schemes like multiple relaxation times or adjusted collision terms [33,50–57]. In
the case of the LB model used in this paper, the control of Pr may be achieved by introducing a force term Iki [43] in the
evolution Eq. (5):
@tfki þ eki � rfki ¼ �
1
s

fki � f eq
ki


 �
þ Iki ð49Þ
The force term
Iki ¼ �
1

2nh2 ½r � ð2qnhsrhÞ�½�2hþ ðeki � uÞ2�f eq
ki ð50Þ
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changes the value of the heat conducibility in the energy equation by a factor ðqþ 1Þ, from j ¼ 2nhs to j ¼ 2ðqþ 1Þnhs [43].
Consequently, the Prandtl number changes from Pr=1 to Pr ¼ 1=ð1þ qÞ.

We performed a series of simulations using version 2 of our diffuse reflection boundary conditions in order to
check its compatibility with the force term Iki introduced above. For this purpose, we considered the thermal Cou-
ette flow between two vertical walls of different temperatures hwl ¼ 1� D=2; hwr ¼ 1þ D=2;D ¼ 0:006666. The walls
move in opposite directions with velocities uwl ¼ �uw and uwr ¼ uw, as previously. The simulations were done on
a lattice with N ¼ 100 nodes in the normal direction to the walls. Fig. 8 shows the temperature profiles normalized
to D, for various values of Pr, when Kn=0.001. These temperature profiles agree to the theoretical profiles derived
according to Eq. (37).

4.3. Evidence of Knudsen minimum in poiseuille flow

Poiseuille flow driven by a constant force along the channel was also considered to further check the improved boundary
conditions introduced in this paper. A key test is the evidence of the so-called Knudsen minimum, i.e., the minimum value of
the mass flow rate plotted as a function of Knudsen number Kn [1,2]. This minimun has been experimentally observed long
time ago [58] and reported only recently in lattice Boltzmann simulations [21,25,30,59–61].

We carried a series of LB simulations for various values of Knudsen number Kn using version 2 of our diffuse reflection
boundary conditions on the same lattice with 100� 3 nodes ðds ¼ 0:01Þ that was used in Section 4.1. Both walls were at rest
ðuwl ¼ uwr ¼ 0Þ and had the same temperature hw ¼ 1. The fluid was subjected to a constant acceleration a ¼ 0:001 in the
vertical direction. Following Ref. [59], the resulted fluid flow rates in the stationary state
QðKnÞ ¼
Z L=2

�L=2
nðx; yÞuyðx; yÞdx ð51Þ
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were normalized by the factor
Q0 ¼
aL2

�c
ð52Þ
The normalized flow rates QðKnÞ ¼ QðKnÞ=Q0 are plotted in Fig. 9 and agree well to the analytical result of Cercignani [62]
Q ¼ 1
6Kn

þ sþ ð2s2 � 1ÞKn; s ¼ 1:01615 ð53Þ
even beyond the slip flow regime (Kn > 0.1). Note that the minimum flow rate is recovered for Kn = 0.35 in our simulations,
while the minimum value of the expression (53) is located at Kn ’ 0:394.

5. Conclusion

Three new implementation versions of the diffuse reflection boundary conditions were introduced for the two-dimen-
sional LB model with variable temperature of Watari and Tsutahara [38] in order to allow to use second order flux limiter
schemes in the lattice nodes adjacent to the flow domain walls. The accuracy of the new implementations was tested in the
case of the slip flow regime of Couette flow (Kn<0.1). For small Kn and large ds, unphysical (negative) values of the velocity
slip and temperature jump are observed when using versions 0 and 1 of the diffuse reflection boundary conditions. Analysis
of computer results show that the newly introduced versions 2 and 3 of the diffuse reflection boundary conditions, which
involve outgoing fluxes instead of particle distribution functions, give the best results. Version 2 involves no interpolation
procedure to determine the distribution functions in the ghost nodes outside the flow domain and hence is more economical.
This version was thereafter used to investigate the temperature profile in Couette flow for various values of Prandtl number,
as well as the capabiliy of the thermal LB model to capture the Knudsen minimum in Poiseuille flow. Application of this ver-
sion of diffuse reflection boundary conditions to higher-order lattice Boltzmann models introduced recently [48] will be the
subject of further work.
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